. Orang yang menginginkan... impiannya menjadi kenyataan, harus menjaga diri agar tidak tertidur.
dekripsi
Rabu, 29 April 2015
Selasa, 28 April 2015
Rangkaian diagram garis star delta pada motor induksi AC 3 phasa
Mungkin semua sudah tahu apa itu rangkaian star delta? Dan apa fungsi dari rangkaian star delta itu sendiri. Untuk yang belum tahu akan saya jelaskan secara singkat. Rangkaian star delta adalah rangkaian instalasi motor dengan sambungan bintang segitiga (Y∆), atau lebih dikenal dengan nama koneksi star delta. lalu apa fungsi dari koneksi motor secara star delta itu? Fungsi dari koneksi star delta adalah untuk menurunkan atau mengurangi besarnya arus start motor.
Bagaimana teori atau metode koneksi star delta ini bisa menurunkan besarnya arus starting motor? sebelumnya tentu kita tahu besarnya tegangan dan arus itu berbanding terbalik. Semakin besar tegangan maka arus akan semakin kecil begitu sebaliknya semakin kecil tegangan maka arus akan semakin besar. Bagaimana itu terjadi ?untuk menjawab itu kita harus tahu dulu, hubungan antara daya ( P ), tegangan( V ) , dan arus ( I ).
Dari rumus diatas tentu kita sudah mengerti. Coba anda hitung berapa besarnya arus ( I )?, dengan daya (P) yang sama, coba anda bagi dengan tegangan(V) yang berbeda. Tentu saja hasilnya sudah bisa ditebak, dengan tegangan yang besar maka arus akan kecil, begitu juga sebaliknya. Lalu apa hubungannya rumus diatas dengan rangkaian star delta?? Pada koneksi star delta ada perbedaan antara besarnya tegangan pada koneksi star dan besarnya tegangan pada koneksi delta.
Tegangan dan arus pada koneksi star delta
Besarnya tegangan(V) line pada sambungan star/bintang (Y) adalah akar 3 . V fasa, dan besarnya arus line pada sambungan star/bintang sama dengan besarnya arus fasa. Sedangkan pada sambungan delta/segitiga(∆) tegangan(V) line = V fasa, dan arus(I) line = akar 3 . arus(I) fasa.
Contohnya dengan tegangan fasa 220V berapa tegangan line untuk hubung star dan hubung delta?
· Tegangan pada sambungan star --- Vline = akar 3 . V fasa = 1.73 . 220V = 380V
· Tegangan pada sambungan delta--- V line = V fasa = 220V
Dari hasil diatas pada hubungan star memiliki tegangan yang lebih besar dibanding tegangan pada hubungan delta. dan tentu sudah terbukti metode starting motor secara star delta dapat menurunkan besarnya arus start.
Kesalahan pada koneksi star delta
Mungkin semua sudah tahu apa itu star delta beserta fungsi-fungsinya. Namun mungkin masih banyak yang belum mengerti bagaimanana melakukan instalasi/penyambungan star delta sesuai standar yang benar. Melakukan instalasi sesuai standar yang benar itu sangat penting agar kita tidak dirugikan dengan pemasangan instalasi yang salah/ngawur. Contohnya pada koneksi delta jika pada pemasangannya kita tidak berhati-hati dan tidak sesuai dengan standar tentu bisa membuat koneksi motor tersebut kehilangan salah satu fasa (phase loss). Dan apa akibatnya bila motor 3 fasa dioperasikan dengan kehilangan salah satu fasa?, tentu saja lilitan motor akan terbakar dalam waktu singkat atau jika anda beruntung mungkin akan membuat breaker atau protector(overload relay) cuma trip. Tetapi itu dengan catatan jika anda memasang atau mensetting breaker dan protector dengan standar yang benar. Tentu kita tidak ingin kedua hal tersebut terjadi dan merugikan kita. Karena itulah standarisasi SPL (single point lesson) begitu penting dan selalu terapkan di semua perusahaan. Berikut ini gambaran kesalahan pada koneksi star delta yang sering terjadi pada rangkaian dayanya.
Mungkin anda bertanya-tanya apa yang salah dengan rangkaian daya diatas? Dari Kedua rangkaian daya diatas memang tidak ada yang salah dari koneksi starnya, namun ada beberapa kesalahan di dalam koneksi deltanya. Memang dalam instalasi motor dengan sistem starting secara star delta ini, kebanyakan kesalahan terdapat dalam pemasangan pada koneksi delta. hal ini disebabkan karena pemasangan untuk hubung delta bisa dikatakan lebih rumit daripada hubung star. Pada gambar 1 rangkaian daya diatas jelas terlihat tegangan fasa R (kabel berwarna merah) dihubungkan pada terminal motor dengan label U1 dan U2, hal ini berarti tegangan fasa R hanya dihubungkan pada 1 belitan/lilitan pada motor. hal yang sama juga terlihat pada tegangan fasa S dan T. Apa yang salah dengan itu? Tentu saja sangat salah/ngawur. Sebelumnya tentu anda tahu kenapa koneksi pada motor disebut star dan delta?hal itu karena pada koneksi motor tersebut bisa dibentuk/terlihat seperti bintang ataupun segitiga. Coba anda ubah gambar 1 dan gambar 2 rangkaian daya diatas menjadi koneksi star delta secara terpisah dan sederhana tanpa memperhatikan kontaktor dan protector. Lalu lihat dengan seksama apakah gambar diatas mirip dengan rangkaian delta? jawabannya tentu saja tidak. Untuk memperjelas pemahaman anda tentang koneksi star dan koneksi delta secara benar coba anda lihat gambar dibawah berikut ini.
Gambar koneksi star dan koneksi delta
Gambar diatas bisa menjadi patokan bagaimana melihat koneksi star delta yang benar dan salah. Contohnya secara sederhana begini, jika anda perhatikan gambar pada sebuah rangkaian daya star delta anda bisa melihat pada koneksi starnya apakah mirip dengan star/bintang, dan pada koneksi deltanya apakah mirip delta/segitiga seperti gambar koneksi star delta diatas. Jika itu mirip atau sama bisa dipastikan rangkaian daya itu benar. Dan juga perlu diingat jika anda ingin membalik putaran motor pada rangkaian star delta dengan membalik salah satu tegangan maka anda juga harus membalik salah satu tegangan pada satu sisi yang lain.
Rangkaian daya dan rangkaian kontrol star delta yang benar
Kesimpulan dari artikel rangkaian star delta. Setelah panjang lebar penjelasan tentang star delta, kita bisa menarik kesimpulan kalau pemasangan instalasi motor itu harus sesuai standar yang benar agar tidak terjadi hasil yang tidak diinginkan seperti lilitan motor terbakar dikarenakan phase loss, hubungan singkat atau sebab-sebab lainnya. Khususnya kita harus berhati-hati pada motor yang label terminalnya sudah hilang atau motor hasil repairan/perbaikan yang mungkin sudah tidak sesuai lagi antara terminal dan lilitannya. Jadi kita harus bisa tentukan dulu mana U1U2, V1V2, dan W1W2. Baca juga artikel tentang "membalik arah putaran motor star delta". Semoga artikel ini bermanfaat. Terimakasih.
Selasa, 21 April 2015
JENIS-JENIS DAN PRINSIP KERJA TRANSFORMATOR
Abstraksi: Paper ini berkaitan dengan jenis-jenis transformator. Jenis-jenis transformator disini menjelaskan step-up, step-down, autotransformator, autotransformator variabel, transformator isolasi, dan transformator pulsa. Penggunaan transformator yang digunakan untuk pengiriman tenaga listrik yang terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik dan lilitan pada inti besi lunak. Arus induksi pada transformator mengalir melalui rangkaian sekunder ketika saklar pada rangkaian primer ditutup atau dibuka. Prinsip kerja pada transformator, apabila kumparan primer dihubungkan dengan tegangan (sumber), maka akan mengalir arus bolak-balik pada kumparan tersebut. Oleh karena itu kumparan mempunyai inti, arus yang menimbulkan fluks magnet yang juga berubah-ubah, akibatnya pada kumparan primer akan timbul GGL induksi ep.
Kata Kunci : transformator, jenis-jenis transformator, prinsip kerja transformator
I. Pendahuluan
Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energy listrik satu atau lebih rangkaian listrik satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu gendeng magnet berdasarkan prinsip induksi-elektromagnet. Transformator adalah alat yang digunakan untuk mengubah tegangan bolak balik (ac) dari suatu nilai tertentu ke nilai yang kita inginkan terdiri dari kumparan primer dan sekunder.

Gambar 1. Transformator
Perkembangan dan penerapan system transformator pada perumahan, perkantoran maupun pada kendaran yaitu mobil dewasa ini mengalami peningkatan yang pesat. Buktinya adalah banyak industry, perkantoran maupun kendaran dilengkapi dengan penggunaan transformator yang bertujuan untuk mengetahui informasi dan dapat menambah pengetahuan.
System pesawat telepon yang paling sederhana memiliki komponen utama yaitu ISDN EXCHANGE, ISDN PRA, ISDN BRA, ISDN PHONE, ISDN PBX dan ISDN DATA TERMINAL.
II. Jenis-jenis Transformator
Berkaitan dengan topic yang dikaji yakni kegunaan transformator adalah alat untuk mengubah tegangan arus bolak balik menjadi lebih tinggi atau rendah. Transformator terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik dan dililitkan pada inti besi lunak. Inti besi lunak dibuat dari pelat yang berlapis-lapis untuk mengurangi daya yang hilang karena arus pusar. Kumparan primer dan sekunder dililitkan pada kaki inti besi yang terpisah. Bagian fluks magnetic bocor tampak bahwa pada pasangan kumparan terdapat fluks magnetic bocor disisi primer dan sekunder. Secara lebih lengkap bisa dicermati pada gambar 2.[1]

Gambar 2. Bagan fluks magnetic bocor pada pasangan kumparan
Hasil diatas untuk mengurangi fluks magnet bocor pada pasangan kumparan digunakan pasangan kumparan seperti gambar diatas. Kumparan sekunder dililitkan pada kaki inti besi yang sama (kaki yang tengah), dengan lilitan kumparan sekunder terletak diatas lilitan kumparan primer, ditunjukkan pada fluks magnet bocornya, maka dapat dicermati pada gambar dibawah ini.

Gambar 3. Hubungan primer dan sekunder
Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah[2]:
δΦ = Є x δt (1)
Dan untuk rumus GGL induksi yang terjadi dililitan sekunder adalah
Є = N δΦ/δt (2)
Karena kedua kumparan dihubungkan dengan fluks yang sama, maka
δΦ/δt = Vp/Np = Vs/Ns (3)
Dimana dengan menyusun ulang persamaan akan didapat
Vp/Np = Vs/Ns (4)
Sedemikian sehingga
Vp.Ip = Vs.Is (5)
Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.
Jenis-jenis transformator adalah [3]:
1. Step-Up

Gambar 4. Lambang transformator step-up
Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.
2. Step-down

Gambar 5. Skema transformator step-down
Transformator step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam adaptor AC-DC.
3. Autotransformator

Gambar 6. Skema transformator
Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder. Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).
4. Autotransformator Variabel

Gambar 7. Skema Autotransformator Variabel
Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.
5. Transformator Isolasi
Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling kapasitor.
6. Transformator Pulsa
Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.
7. Transformator Tiga Fasa
Transformator tiga fasa sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta (Δ).
III. Prinsip Kerja Transformator
Komponen Transformator (trafo)
Transformator (trafo) adalah alat yang digunakan untuk menaikkan atau menurunkan tegangan bolak-balik (AC). Transformator terdiri dari 3 komponen pokok yaitu: kumparan pertama (primer) yang bertindak sebagai input, kumparan kedua (skunder) yang bertindak sebagai output, dan inti besi yang berfungsi untuk memperkuat medan magnet yang dihasilkan.[4]

Gambar 8. Bagian-Bagian Transformator

Gambar 9. Lambang Transformator
Prinsip kerja dari sebuah transformator adalah sebagai berikut. Ketika Kumparan primer dihubungkan dengan sumber tegangan bolak-balik, perubahan arus listrik pada kumparan primer menimbulkan medan magnet yang berubah. Medan magnet yang berubah diperkuat oleh adanya inti besi dan dihantarkan inti besi ke kumparan sekunder, sehingga pada ujung-ujung kumparan sekunder akan timbul ggl induksi. Efek ini dinamakan induktansi timbal-balik (mutual inductance).[5]

Gambar 10. Skema transformator kumparan primer dan kumparan sekunder terhadap medan magnet
Pada skema transformator diatas, ketika arus listrik dari sumber tegangan yang mengalir pada kumparan primer berbalik arah (berubah polaritasnya) medan magnet yang dihasilkan akan berubah arah sehingga arus listrik yang dihasilkan pada kumparan sekunder akan berubah polaritasnya.

Gambar 11. Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder
Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder, dapat dinyatakan dalam persamaan[6]:
Vp/Vs = Np/Ns (6)
Vp = tegangan primer (volt)
Vs = tegangan sekunder (volt)
Np = jumlah lilitan primer
Ns = jumlah lilitan sekunder
Simbol Transformator
Berdasarkan perbandingan antara jumlah lilitan primer dan jumlah lilitan skunder transformator ada dua jenis yaitu[7]:
1. Transformator step up yaitu transformator yang mengubah tegangan bolak-balik rendah menjadi tinggi, transformator ini mempunyai jumlah lilitan kumparan sekunder lebih banyak daripada jumlah lilitan primer (Ns > Np).
2. Transformator step down yaitu transformator yang mengubah tegangan bolak-balik tinggi menjadi rendah, transformator ini mempunyai jumlah lilitan kumparan primer lebih banyak daripada jumlah lilitan sekunder (Np > Ns).
Pada transformator (trafo) besarnya tegangan yang dikeluarkan oleh kumparan sekunder adalah:
1. Sebanding dengan banyaknya lilitan sekunder (Vs ~ Ns).
2. Sebanding dengan besarnya tegangan primer ( VS ~ VP).
3. Berbanding terbalik dengan banyaknya lilitan primer,
Vs ~ 1/Np (7)
Sehingga dapat dituliskan:
Vs = Ns/Np x Vp (8)
Penggunaan transformator
Transformator (trafo) digunakan pada peralatan listrik terutama yang memerlukan perubahan atau penyesuaian besarnya tegangan bolak-balik. Misal radio memerlukan tegangan 12 volt padahal listrik dari PLN 220 volt, maka diperlukan transformator untuk mengubah tegangan listrik bolak-balik 220 volt menjadi tegangan listrik bolak-balik 12 volt. Contoh alat listrik yang memerlukan transformator adalah: TV, komputer, mesin foto kopi, gardu listrik dan sebagainya.[8]
IV. Kesimpulan
Kesimpulan dari pembahasan diatas dapat disimpulkan bahwa energy dipindahkan dari kumparan primer ke kumparan sekunder oleh magnetisasi dalam inti.
NOTASI
Vı tegangan primer (ggl induksi
V2 tegangan sekunder (ggl induksi)
Nı jumlah lilitan primer
N2 jumlah lilitan sekunder
V. Referensi
[2, 3] wiki. Rumus yang digunakan, dan Jenis-jenis transformator. Wikipedia; Jakarta.
Rumus yang digunakan yaitu fluks magnet yang ditimbulkan lilitan primer. Jenis-jenis transformator adalah step-up, step-down, autotransformator, autotransformator variabel, transformator isolasi, transformator pulsa, dan transformator tiga fasa.
[4, 5, 7, 8] edukasi.net. Prinsip kerja transformator, dan Penggunaan transformator. Edukasi.net; Jakarta.
Prinsip kerja transformator adalah kumparan primer yang dihubungkan dengan sumber tegangan bolak-balik, sehingga terjadi perubahan arus listrik pada kumparan primer yang menimbulkan medan magnet berubah. Penggunaan transformator pada kehidupan sehari-hari adalah transformator yang dapat mengubah tegangan listrik bolak-balik yang dari 220volt menjadi 120volt.
[1, 6] Kanginan, Marthen. Fisika 2B, Erlangga; Jakarta, 1994.
Kegunaan transformator adalah suatu alat yang berguna untuk mengubah tegangan arus bolak balik menjadi lebih tinggi atau rendah. Transformator terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik. Mejelaskanp persamaan hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder.
Abstraksi: Paper ini berkaitan dengan jenis-jenis transformator. Jenis-jenis transformator disini menjelaskan step-up, step-down, autotransformator, autotransformator variabel, transformator isolasi, dan transformator pulsa. Penggunaan transformator yang digunakan untuk pengiriman tenaga listrik yang terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik dan lilitan pada inti besi lunak. Arus induksi pada transformator mengalir melalui rangkaian sekunder ketika saklar pada rangkaian primer ditutup atau dibuka. Prinsip kerja pada transformator, apabila kumparan primer dihubungkan dengan tegangan (sumber), maka akan mengalir arus bolak-balik pada kumparan tersebut. Oleh karena itu kumparan mempunyai inti, arus yang menimbulkan fluks magnet yang juga berubah-ubah, akibatnya pada kumparan primer akan timbul GGL induksi ep.
Kata Kunci : transformator, jenis-jenis transformator, prinsip kerja transformator
I. Pendahuluan
Transformator adalah suatu alat listrik yang dapat memindahkan dan mengubah energy listrik satu atau lebih rangkaian listrik satu atau lebih rangkaian listrik ke rangkaian listrik yang lain, melalui suatu gendeng magnet berdasarkan prinsip induksi-elektromagnet. Transformator adalah alat yang digunakan untuk mengubah tegangan bolak balik (ac) dari suatu nilai tertentu ke nilai yang kita inginkan terdiri dari kumparan primer dan sekunder.

Gambar 1. Transformator
Perkembangan dan penerapan system transformator pada perumahan, perkantoran maupun pada kendaran yaitu mobil dewasa ini mengalami peningkatan yang pesat. Buktinya adalah banyak industry, perkantoran maupun kendaran dilengkapi dengan penggunaan transformator yang bertujuan untuk mengetahui informasi dan dapat menambah pengetahuan.
System pesawat telepon yang paling sederhana memiliki komponen utama yaitu ISDN EXCHANGE, ISDN PRA, ISDN BRA, ISDN PHONE, ISDN PBX dan ISDN DATA TERMINAL.
II. Jenis-jenis Transformator
Berkaitan dengan topic yang dikaji yakni kegunaan transformator adalah alat untuk mengubah tegangan arus bolak balik menjadi lebih tinggi atau rendah. Transformator terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik dan dililitkan pada inti besi lunak. Inti besi lunak dibuat dari pelat yang berlapis-lapis untuk mengurangi daya yang hilang karena arus pusar. Kumparan primer dan sekunder dililitkan pada kaki inti besi yang terpisah. Bagian fluks magnetic bocor tampak bahwa pada pasangan kumparan terdapat fluks magnetic bocor disisi primer dan sekunder. Secara lebih lengkap bisa dicermati pada gambar 2.[1]

Gambar 2. Bagan fluks magnetic bocor pada pasangan kumparan
Hasil diatas untuk mengurangi fluks magnet bocor pada pasangan kumparan digunakan pasangan kumparan seperti gambar diatas. Kumparan sekunder dililitkan pada kaki inti besi yang sama (kaki yang tengah), dengan lilitan kumparan sekunder terletak diatas lilitan kumparan primer, ditunjukkan pada fluks magnet bocornya, maka dapat dicermati pada gambar dibawah ini.

Gambar 3. Hubungan primer dan sekunder
Rumus untuk fluks magnet yang ditimbulkan lilitan primer adalah[2]:
δΦ = Є x δt (1)
Dan untuk rumus GGL induksi yang terjadi dililitan sekunder adalah
Є = N δΦ/δt (2)
Karena kedua kumparan dihubungkan dengan fluks yang sama, maka
δΦ/δt = Vp/Np = Vs/Ns (3)
Dimana dengan menyusun ulang persamaan akan didapat
Vp/Np = Vs/Ns (4)
Sedemikian sehingga
Vp.Ip = Vs.Is (5)
Dengan kata lain, hubungan antara tegangan primer dengan tegangan sekunder ditentukan oleh perbandingan jumlah lilitan primer dengan lilitan sekunder.
Jenis-jenis transformator adalah [3]:
1. Step-Up

Gambar 4. Lambang transformator step-up
Transformator step-up adalah transformator yang memiliki lilitan sekunder lebih banyak daripada lilitan primer, sehingga berfungsi sebagai penaik tegangan. Transformator ini biasa ditemui pada pembangkit tenaga listrik sebagai penaik tegangan yang dihasilkan generator menjadi tegangan tinggi yang digunakan dalam transmisi jarak jauh.
2. Step-down

Gambar 5. Skema transformator step-down
Transformator step-down memiliki lilitan sekunder lebih sedikit daripada lilitan primer, sehingga berfungsi sebagai penurun tegangan. Transformator jenis ini sangat mudah ditemui, terutama dalam adaptor AC-DC.
3. Autotransformator

Gambar 6. Skema transformator
Transformator jenis ini hanya terdiri dari satu lilitan yang berlanjut secara listrik, dengan sadapan tengah. Dalam transformator ini, sebagian lilitan primer juga merupakan lilitan sekunder. Fasa arus dalam lilitan sekunder selalu berlawanan dengan arus primer, sehingga untuk tarif daya yang sama lilitan sekunder bisa dibuat dengan kawat yang lebih tipis dibandingkan transformator biasa. Keuntungan dari autotransformator adalah ukuran fisiknya yang kecil dan kerugian yang lebih rendah daripada jenis dua lilitan. Tetapi transformator jenis ini tidak dapat memberikan isolasi secara listrik antara lilitan primer dengan lilitan sekunder. Selain itu, autotransformator tidak dapat digunakan sebagai penaik tegangan lebih dari beberapa kali lipat (biasanya tidak lebih dari 1,5 kali).
4. Autotransformator Variabel

Gambar 7. Skema Autotransformator Variabel
Autotransformator variabel sebenarnya adalah autotransformator biasa yang sadapan tengahnya bisa diubah-ubah, memberikan perbandingan lilitan primer-sekunder yang berubah-ubah.
5. Transformator Isolasi
Transformator isolasi memiliki lilitan sekunder yang berjumlah sama dengan lilitan primer, sehingga tegangan sekunder sama dengan tegangan primer. Tetapi pada beberapa desain, gulungan sekunder dibuat sedikit lebih banyak untuk mengkompensasi kerugian. Transformator seperti ini berfungsi sebagai isolasi antara dua kalang. Untuk penerapan audio, transformator jenis ini telah banyak digantikan oleh kopling kapasitor.
6. Transformator Pulsa
Transformator pulsa adalah transformator yang didesain khusus untuk memberikan keluaran gelombang pulsa. Transformator jenis ini menggunakan material inti yang cepat jenuh sehingga setelah arus primer mencapai titik tertentu, fluks magnet berhenti berubah. Karena GGL induksi pada lilitan sekunder hanya terbentuk jika terjadi perubahan fluks magnet, transformator hanya memberikan keluaran saat inti tidak jenuh, yaitu saat arus pada lilitan primer berbalik arah.
7. Transformator Tiga Fasa
Transformator tiga fasa sebenarnya adalah tiga transformator yang dihubungkan secara khusus satu sama lain. Lilitan primer biasanya dihubungkan secara bintang (Y) dan lilitan sekunder dihubungkan secara delta (Δ).
III. Prinsip Kerja Transformator
Komponen Transformator (trafo)
Transformator (trafo) adalah alat yang digunakan untuk menaikkan atau menurunkan tegangan bolak-balik (AC). Transformator terdiri dari 3 komponen pokok yaitu: kumparan pertama (primer) yang bertindak sebagai input, kumparan kedua (skunder) yang bertindak sebagai output, dan inti besi yang berfungsi untuk memperkuat medan magnet yang dihasilkan.[4]

Gambar 8. Bagian-Bagian Transformator

Gambar 9. Lambang Transformator
Prinsip kerja dari sebuah transformator adalah sebagai berikut. Ketika Kumparan primer dihubungkan dengan sumber tegangan bolak-balik, perubahan arus listrik pada kumparan primer menimbulkan medan magnet yang berubah. Medan magnet yang berubah diperkuat oleh adanya inti besi dan dihantarkan inti besi ke kumparan sekunder, sehingga pada ujung-ujung kumparan sekunder akan timbul ggl induksi. Efek ini dinamakan induktansi timbal-balik (mutual inductance).[5]

Gambar 10. Skema transformator kumparan primer dan kumparan sekunder terhadap medan magnet
Pada skema transformator diatas, ketika arus listrik dari sumber tegangan yang mengalir pada kumparan primer berbalik arah (berubah polaritasnya) medan magnet yang dihasilkan akan berubah arah sehingga arus listrik yang dihasilkan pada kumparan sekunder akan berubah polaritasnya.

Gambar 11. Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder
Hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder, dapat dinyatakan dalam persamaan[6]:
Vp/Vs = Np/Ns (6)
Vp = tegangan primer (volt)
Vs = tegangan sekunder (volt)
Np = jumlah lilitan primer
Ns = jumlah lilitan sekunder
Simbol Transformator
Berdasarkan perbandingan antara jumlah lilitan primer dan jumlah lilitan skunder transformator ada dua jenis yaitu[7]:
1. Transformator step up yaitu transformator yang mengubah tegangan bolak-balik rendah menjadi tinggi, transformator ini mempunyai jumlah lilitan kumparan sekunder lebih banyak daripada jumlah lilitan primer (Ns > Np).
2. Transformator step down yaitu transformator yang mengubah tegangan bolak-balik tinggi menjadi rendah, transformator ini mempunyai jumlah lilitan kumparan primer lebih banyak daripada jumlah lilitan sekunder (Np > Ns).
Pada transformator (trafo) besarnya tegangan yang dikeluarkan oleh kumparan sekunder adalah:
1. Sebanding dengan banyaknya lilitan sekunder (Vs ~ Ns).
2. Sebanding dengan besarnya tegangan primer ( VS ~ VP).
3. Berbanding terbalik dengan banyaknya lilitan primer,
Vs ~ 1/Np (7)
Sehingga dapat dituliskan:
Vs = Ns/Np x Vp (8)
Penggunaan transformator
Transformator (trafo) digunakan pada peralatan listrik terutama yang memerlukan perubahan atau penyesuaian besarnya tegangan bolak-balik. Misal radio memerlukan tegangan 12 volt padahal listrik dari PLN 220 volt, maka diperlukan transformator untuk mengubah tegangan listrik bolak-balik 220 volt menjadi tegangan listrik bolak-balik 12 volt. Contoh alat listrik yang memerlukan transformator adalah: TV, komputer, mesin foto kopi, gardu listrik dan sebagainya.[8]
IV. Kesimpulan
Kesimpulan dari pembahasan diatas dapat disimpulkan bahwa energy dipindahkan dari kumparan primer ke kumparan sekunder oleh magnetisasi dalam inti.
NOTASI
Vı tegangan primer (ggl induksi
V2 tegangan sekunder (ggl induksi)
Nı jumlah lilitan primer
N2 jumlah lilitan sekunder
V. Referensi
[2, 3] wiki. Rumus yang digunakan, dan Jenis-jenis transformator. Wikipedia; Jakarta.
Rumus yang digunakan yaitu fluks magnet yang ditimbulkan lilitan primer. Jenis-jenis transformator adalah step-up, step-down, autotransformator, autotransformator variabel, transformator isolasi, transformator pulsa, dan transformator tiga fasa.
[4, 5, 7, 8] edukasi.net. Prinsip kerja transformator, dan Penggunaan transformator. Edukasi.net; Jakarta.
Prinsip kerja transformator adalah kumparan primer yang dihubungkan dengan sumber tegangan bolak-balik, sehingga terjadi perubahan arus listrik pada kumparan primer yang menimbulkan medan magnet berubah. Penggunaan transformator pada kehidupan sehari-hari adalah transformator yang dapat mengubah tegangan listrik bolak-balik yang dari 220volt menjadi 120volt.
[1, 6] Kanginan, Marthen. Fisika 2B, Erlangga; Jakarta, 1994.
Kegunaan transformator adalah suatu alat yang berguna untuk mengubah tegangan arus bolak balik menjadi lebih tinggi atau rendah. Transformator terdiri dari pasangan kumparan primer dan sekunder yang diisolasi (terpisah) secara listrik. Mejelaskanp persamaan hubungan antara tegangan primer, jumlah lilitan primer, tegangan sekunder, dan jumlah lilitan sekunder.
Hubungan Transformator Tiga Phasa dan Rumus

Secara umum ada 3 macam jenis hubungan pada transformator tiga phasa yaitu :
Hubungan Bintang (Y)

Transformator tiga phasa hubungan bintang.
Dari gambar diperoleh bahwa :
IA = IB = IC = IL
IL = Iph
VAB = VBC = VCA = VL-L
VL-L = Vph
Dimana :
VL-L = tegangan line to line (Volt)
Vph = tegangan phasa (Volt)
IL = arus line (Ampere)
Iph = arus phasa (Ampere)
Hubungan Segitiga/ Delta (Δ)

Transformator tiga phasa hubungan segitiga/delta.
Dari gambar diperoleh bahwa :
IA = IB = IC = IL
IL = Iph
VAB = VBC = VCA = VL-L
VL-L = Vph
Dimana :
VL-L = tegangan line to line (Volt)
Vph = tegangan phasa (Volt)
IL = arus line (Ampere)
Iph = arus phasa (Ampere)
Hubungan Zigzag
Salah satu aplikasinya adalah menyediakan titik netral untuk sistem listrik yang tidak memiliki titik netral. Pada transformator zig–zag masing–masing lilitan tiga fasa dibagi menjadi dua bagian dan masing–masing dihubungkan pada kaki yang berlainan.
Transformator tiga phasa hubungan zig-zag.
Perbandingan Rugi-rugi untuk tiap kumparan yang terhubung Y, Δ, Zig-zag adalah:
Dimana :
iY = arus pada kumparan yang terhubung Y
ρ = hambatan jenis tembaga
LY = panjang kumparan yang terhubung Y
AY = Luas penampang kumparan yang terhubung Y
AΔ = Luas penampang kumparan yang terhubung Δ
AZZ = Luas penampang kumparan yang terhubung Zig-zag
Jenis-Jenis Hubungan Transformator Tiga Phasa
Dalam pelaksanaanya, tiga buah lilitan phasa pada sisi primer dan sisi sekunder dapat dihubungkan dalam bermacam-macam hubungan, seperti bintang dan segitiga, dengan kombinasi Y-Y, Y-Δ, Δ-Y, Δ-Δ, bahkan untuk kasus tertentu liltan sekunder dapat dihubungakan secara berliku-liku (zig-zag), sehingga diperoleh kombinasi Δ-Z, dan Y-Z. Hubungan zig-zag merupakan sambungan bintang istimewa, hubungan ini digunakan untuk mengantisipasi kejadian yang mungkin terjadi apabila dihubungkan secara bintang dengan beban phasanya tidak seimbang. Di bawah ini pembahasan hubungan transformator tiga phasa secara umum :
Hubungan Wye-wye (Y-Y)
Pada hubungan bintang-bintang, rasio tegangan fasa-fasa (L-L) pada primer dan sekunder adalah sama dengan rasio setiap trafo. Sehingga, tejadi pergeseran fasa sebesar 30° antara tegangan fasa-netral (L-N) dan tegangan fasa-fasa (L-L) pada sisi primer dan sekundernya.
Hubungan bintang-bintang ini akan sangat baik hanya jika pada kondisi beban seimbang. Karena, pada kondisi beban seimbang menyebabkan arus netral (IN) akan sama dengan nol. Dan apabila terjadi kondisi tidak seimbang maka akan ada arus netral yang kemudian dapat menyebabkan timbulnya rugi-rugi.
Tegangan phasa primer sebanding dengan tegangan phasa sekunder dan perbandingan belitan transformator maka, perbandingan antara tegangan primer dengan tegangan sekunder pada transformator hubungan Y-Y adalah :
Gambar Transformator 3 phasa hubungan Y-Y.
Hubungan Wye-delta (Y-Δ)
Transformator hubungan Y-Δ, digunakan pada saluran transmisi sebagai penaik tegangan. Rasio antara sekunder dan primer tegangan fasa-fasa adalah 1/√3 kali rasio setiap trafo. Terjadi sudut 30° antara tegangan fasa-fasa antara primer dan sekunder yang berarti bahwa trafo Y-Δ tidak bisa diparalelkan dengan trafo Y-Y atau trafo Δ-Δ. Hubungan transformator Y-Δ dapat dilihat pada Gambar Pada hubungan ini tegangan kawat ke kawat primer sebanding dengan tegangan phasa primer (VLP=√3VPhP), dan tegangan kawat ke kawat sekunder sama dengan tegangan phasa (VLS=VphS), sehingga diperoleh perbandingan tegangan pada hubungan Y-Δ adalah :
Gambar Transformator 3 phasa hubungan Y-Δ.
Hubungan Delta-wye (Δ-Y)
Transformator hubungan Δ-Y, digunakan untuk menurunkan tegangan dari tegangan transmisi ke tegangan rendah. Transformator hubungan Δ-Y dapat dilihat pada Gambar Pada hubungan Δ-Y, tegangan kawat ke kawat primer sama dengan tegangan phasa primer (VLP=VphP ), dan tegangan sisi sekundernya ( VLS=√3VphS), maka perbandingan tegangan pada hubungan Δ-Y adalah :
GambarTransformator 3 phasa hubungan Δ-Y.
Hubungan Delta - delta (Δ-Δ)
Pada transformator hubungan Δ-Δ, tegangan kawat ke kawat dan tegangan phasa sama untuk sisi primer dan sekunder transformator (VRS = VST = VTR = VLN), maka perbandingan tegangannya adalah :
Sedangkan arus pada transformator hubungan Δ-Δ adalah :
IL=√3Ip
Dimana :
IL = arus line to line
IP = arus phasa
Sekian dulu Listrik tentang transformator terimakasih sudah mau membaca
Langganan:
Postingan (Atom)